35 research outputs found

    Synthetic mammalian trigger-controlled bipartite transcription factors

    Get PDF
    Synthetic biology has significantly advanced the design of synthetic control devices, gene circuits and networks that can reprogram mammalian cells in a trigger-inducible manner. Prokaryotic helix-turn-helix motifs have become the standard resource to design synthetic mammalian transcription factors that tune chimeric promoters in a small molecule-responsive manner. We have identified a family of Actinomycetes transcriptional repressor proteins showing a tandem TetR-family signature and have used a synthetic biology-inspired approach to reveal the potential control dynamics of these bi-partite regulators. Daisy-chain assembly of well-characterized prokaryotic repressor proteins such as TetR, ScbR, TtgR or VanR and fusion to either the Herpes simplex transactivation domain VP16 or the Krueppel-associated box domain (KRAB) of the human kox-1 gene resulted in synthetic bi- and even tri-partite mammalian transcription factors that could reversibly program their individual chimeric or hybrid promoters for trigger-adjustable transgene expression using tetracycline (TET), Îł-butyrolactones, phloretin and vanillic acid. Detailed characterization of the bi-partite ScbR-TetR-VP16 (ST-TA) transcription factor revealed independent control of TET- and Îł-butyrolactone-responsive promoters at high and double-pole double-throw (DPDT) relay switch qualities at low intracellular concentrations. Similar to electromagnetically operated mechanical DPDT relay switches that control two electric circuits by a fully isolated low-power signal, TET programs ST-TA to progressively switch from TetR-specific promoter-driven expression of transgene one to ScbR-specific promoter-driven transcription of transgene two while ST-TA flips back to exclusive transgene 1 expression in the absence of the trigger antibiotic. We suggest that natural repressors and activators with tandem TetR-family signatures may also provide independent as well as DPDT-mediated control of two sets of transgenes in bacteria, and that their synthetic transcription-factor analogs may enable the design of compact therapeutic gene circuits for gene and cell-based therapie

    Broad spectrum thiopeptide recognition specificity of the Streptomyces lividans TipAL protein and its role in regulating gene expression.

    Get PDF
    Microbial metabolites isolated in screening programs for their ability to activate transcription of the tipA promoter (ptipA) in Streptomyces lividans define a class of cyclic thiopeptide antibiotics having dehydroalanine side chains ("tails"). Here we show that such compounds of heterogeneous primary structure (representatives tested: thiostrepton, nosiheptide, berninamycin, promothiocin) are all recognized by TipAS and TipAL, two in-frame translation products of the tipA gene. The N-terminal helix-turn-helix DNA binding motif of TipAL is homologous to the MerR family of transcriptional activators, while the C terminus forms a novel ligand-binding domain. ptipA inducers formed irreversible complexes in vitro and in vivo (presumably covalent) with TipAS by reacting with the second of the two C-terminal cysteine residues. Promothiocin and thiostrepton derivatives in which the dehydroalanine side chains were removed lost the ability to modify TipAS. They were able to induce expression of ptipA as well as the tipA gene, although with reduced activity. Thus, TipA required the thiopeptide ring structure for recognition, while the tail served either as a dispensable part of the recognition domain and/or locked thiopeptides onto TipA proteins, thus leading to an irreversible transcriptional activation. Construction and analysis of a disruption mutant showed that tipA was autogenously regulated and conferred thiopeptide resistance. Thiostrepton induced the synthesis of other proteins, some of which did not require tipA

    Changes in Parasitoid Communities Over Time and Space: A Historical Case Study of the Maize Pest Ostrinia nubilalis

    Get PDF
    Understanding the ways in which human environmental modifications affect biodiversity is a key challenge in conservation planning, pest control and evolutionary ecology. Parasitoid communities, particularly those associated with agricultural pests, may be susceptible to such modifications. We document here changes in the larval parasitoid communities of Ostrinia nubilalis — the main pest of maize — and its sibling species O. scapulalis, based on two historical datasets, one collected from 1921–1928 and the other from 2001–2005. Each of these datasets encompasses several years and large geographical areas and was based on several thousands/millions of host larvae. The 80-year interval between the two datasets was marked by a decrease in O. nubilalis parasitism to about two thirds its initial level, mostly due to a decrease in the rate of parasitism by hymenopterans. However, a well balanced loss and gain of species ensured that species richness remained stable. Conversely, O. scapulalis displayed stable rates of parasitism over this period, with a decline in the species richness of its parasitoid community. Rates of parasitism and species richness in regions colonized by O. nubilalis during the 1950s were one half to one third those in regions displaying long-term colonisation by this pest. During the recent human activity-driven expansion of its range, O. nubilalis has neither captured native parasitoids nor triggered parasite spill back or spill over

    Streptomyces‐derived quorum‐sensing systems engineered for adjustable transgene expression in mammalian cells and mice

    Get PDF
    Prokaryotic transcriptional regulatory elements have been adopted for controlled expression of cloned genes in mammalian cells and animals, the cornerstone for gene‐function correlations, drug discovery, biopharmaceutical manufacturing as well as advanced gene therapy and tissue engineering. Many prokaryotes have evolved specific molecular communication systems known as quorum‐sensing to coordinate population‐wide responses to physiological and/or physicochemical signals. A generic bacterial quorum‐sensing system is based on a diffusible signal molecule that prevents binding of a repressor to corresponding operator sites thus resulting in derepression of a target regulon. In Streptomyces, a family of butyrolactones and their corresponding receptor proteins, serve as quorum‐sensing systems that control morphological development and antibiotic biosynthesis. Fusion of the Streptomyces coelicolor quorum‐sensing receptor (ScbR) to a eukaryotic transactivation domain (VP16) created a mammalian transactivator (SCA) which binds and adjusts transcription from chimeric promoters containing an SCA‐specific operator module (PSPA). Expression of erythropoietin or the human secreted alkaline phosphatase (SEAP) by this quorum‐sensor‐regulated gene expression system (QuoRex) could be fine‐tuned by non‐toxic butyrolactones in a variety of mammalian cells including human primary and mouse embryonic stem cells. Following intraperitoneal implantation of microencapsulated Chinese hamster ovary cells transgenic for QuoRex‐controlled SEAP expression into mice, the serum levels of this model glycoprotein could be adjusted to desired concentrations using different butyrolactone dosing regime

    Optimized Protocol for Subcutaneous Implantation of Encapsulated Cells Device and Evaluation of Biocompatibility

    Get PDF
    Improving a drug delivery system is critical to treat central nervous system disorders. Here we studied an innovative approach based on implantation of a wireless-powered cell-based device in mice. This device, coupling biologic material and electronics, is the first of its kind. The advantage of this technology is its ability to control the secretion of a therapeutic molecule and to switch the classical permanent delivery to activation on demand. In diseases with relapsing-remitting phases such as multiple sclerosis, such activation could be selectively achieved in relapsing phases. However, the safety (tolerance to biomaterials and surgical procedure) of such a clinical device needs to be verified. Therefore, the development of tools to assess the biocompatibility of the system in animal models is an essential step. We present the development of this new therapeutic approach, the challenges we encountered during the different steps of its development (such as cell loading in the chamber, surgery protocol for subcutaneous implantation of the device) and the tools we used to evaluate cell viability and biocompatibility of the device.ISSN:2296-418

    Withdrawal of maize protection by herbicides and insecticides increases mycotoxins contamination near maximum thresholds

    No full text
    Environmental and economic issues affect decision-making for whether or not to control small infestations of pests and pathogens in crops. Even where no crop yield loss is expected, other risks may be evident, such as the slow accumulation of pathogen inocula. The prevalence of toxins, arising from biotic interactions with fungal diseases, can alter crop quality rather than quantity. Thus, farmer decisions for whether to tolerate pest infestation must take into account several direct and immediate and/or delayed potential risks. Published scientific evidence on the co-occurrence of risk factors resulting from the presence of different pests and pathogens are largely absent, and this has stifled the adoption of integrated pest management. Here, we tested how the withdrawal of herbicide and insecticide protection in maize, alone and in combination, might induce higher prevalence of up to 23 mycotoxins in the crop at harvest. The experiment was conducted over 4 years in 29 fields in the south west of France. The test involved a comparison of paired samples collected from treated and untreated plots. All nine major mycotoxins that were observed in more than 4 % of the samples showed highly variable concentrations both between fields and years. The overall trend following the cessation of pesticide protection, however, is for higher levels of mycotoxins and up to a six-fold increased in nivalenol mean concentration (to 202.3 mu g kg(-1) of maize seeds) compared to its treated control. Overall mycotoxin concentrations approached 55-67 % of their maximum acceptable rate, a situation of reduced security margin that could lead to economic penalties and market restrictions. We found that the removal of herbicides had a greater impact than that of insecticides on the prevalence of mycotoxins, which differs from the expectation stated in the literature. This finding is further reinforced by the observation that certain species of weeds harbor several species of Fusarium. This means that weeds not only play a role as crop competitors but also as reservoirs of inoculum in the field. Our findings illustrate the importance of sanitary evaluation when the implementation of new cropping systems will alter the distribution and occurrence of pests and pathogens

    Synthetic mammalian trigger-controlled bipartite transcription factors

    Get PDF
    Synthetic biology has significantly advanced the design of synthetic control devices, gene circuits and networks that can reprogram mammalian cells in a trigger-inducible manner. Prokaryotic helix-turn-helix motifs have become the standard resource to design synthetic mammalian transcription factors that tune chimeric promoters in a small molecule-responsive manner. We have identified a family of Actinomycetes transcriptional repressor proteins showing a tandem TetR-family signature and have used a synthetic biology-inspired approach to reveal the potential control dynamics of these bi-partite regulators. Daisy-chain assembly of well-characterized prokaryotic repressor proteins such as TetR, ScbR, TtgR or VanR and fusion to either the Herpes simplex transactivation domain VP16 or the Krueppel-associated box domain (KRAB) of the human kox-1 gene resulted in synthetic bi- and even tri-partite mammalian transcription factors that could reversibly program their individual chimeric or hybrid promoters for trigger-adjustable transgene expression using tetracycline (TET), Îł-butyrolactones, phloretin and vanillic acid. Detailed characterization of the bi-partite ScbR-TetR-VP16 (ST-TA) transcription factor revealed independent control of TET- and Îł-butyrolactone-responsive promoters at high and double-pole double-throw (DPDT) relay switch qualities at low intracellular concentrations. Similar to electromagnetically operated mechanical DPDT relay switches that control two electric circuits by a fully isolated low-power signal, TET programs ST-TA to progressively switch from TetR-specific promoter-driven expression of transgene one to ScbR-specific promoter-driven transcription of transgene two while ST-TA flips back to exclusive transgene 1 expression in the absence of the trigger antibiotic. We suggest that natural repressors and activators with tandem TetR-family signatures may also provide independent as well as DPDT-mediated control of two sets of transgenes in bacteria, and that their synthetic transcription-factor analogs may enable the design of compact therapeutic gene circuits for gene and cell-based therapies.ISSN:1362-4962ISSN:0301-561

    Synthetic Biology and the Translational Imperative

    No full text
    Advances at the interface between the biological sciences and engineering are giving rise to emerging research fields such as synthetic biology. Harnessing the potential of synthetic biology requires timely and adequate translation into clinical practice. However, the translational research enterprise is currently facing fundamental obstacles that slow down the transition of scientific discoveries from the laboratory to the patient bedside. These obstacles including scarce financial resources and deficiency of organizational and logistic settings are widely discussed as primary impediments to translational research. In addition, a number of socio-ethical considerations inherent in translational research need to be addressed. As the translational capacity of synthetic biology is tightly linked to its social acceptance and ethical approval, ethical limitations may-together with financial and organizational problems-be co-determinants of suboptimal translation. Therefore, an early assessment of such limitations will contribute to proactively favor successful translation and prevent the promising potential of synthetic biology from remaining under-expressed. Through the discussion of two case-specific inventions in synthetic biology and their associated ethical implications, we illustrate the socio-ethical challenges ahead in the process of implementing synthetic biology into clinical practice. Since reducing the translational lag is essential for delivering the benefits of basic biomedical research to society at large and promoting global health, we advocate a moral obligation to accelerating translational research: the "translational imperative.

    Correction to: Synthetic Biology and the Translational Imperative

    No full text
    The author group of above-mentioned review paper was incorrectly published in the online article
    corecore